Abstract

We report direct measurements of changes in the conduction-band structure of ultrathin silicon nanomembranes with quantum confinement. Confinement lifts the 6-fold-degeneracy of the bulk-silicon conduction-band minimum (CBM), Delta, and two inequivalent sub-band ladders, Delta(2) and Delta(4), form. We show that even very small surface roughness smears the nominally steplike features in the density of states (DOS) due to these sub-bands. We obtain the energy splitting between Delta(2) and Delta(4) and their shift with respect to the bulk value directly from the 2p(3/2)-->Delta transition in X-ray absorption. The measured dependence of the sub-band splitting and the shift of their weighted average on degree of confinement is in excellent agreement with theory, for both Si(001) and Si(110).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call