Abstract

We investigate hybrid charge transfer exciton (HCTE) confinement in organic-inorganic (OI) quantum wells (QWs) comprising a thin InGaN layer bound on one side by GaN and on the other by the organic semiconductors, tetraphenyldibenzoperiflanthene (DBP) or 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP). A binding energy of 10 meV is calculated for the Coulombically bound free HCTE state between a delocalized electron in GaN and a hole localized in DBP. The binding energy of the HCTE increases to 165 meV when the electron is confined to a 1.5 nm In0.21Ga0.79N QW (HCTEQW). The existence of the HCTEQW is confirmed by measuring the voltage-dependent DBP exciton dissociation yield at the OI heterojunction in the QW devices that decrease with increasing In concentration and decreasing electric field, matching the trends predicted by Poole-Frenkel emission. Combining spectroscopic measurements with optical models, we find that 14 ± 3% of the excitons that reach the GaN/DBP heterojunction form HCTEs and dissociate into free charges, while the remainder recombine. A high nonradiative recombination rate through defect states at the heterointerface account for the lack of observation of HCTEQW photoluminescence from GaN/InGaN/CBP QWs at temperatures as low as 10 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.