Abstract
We demonstrate lithographically fabricated Si nanowire field effect transistors (FETs) with long Si nanowires of tiny cross sectional size (∼3-5 nm) exhibiting high performance without employing complementarily doped junctions or high channel doping. These nanowire FETs show high peak hole mobility (as high as over 1200 cm(2)/(V s)), current density, and drive current as well as low drain leakage current and high on/off ratio. Comparison of nanowire FETs with nanobelt FETs shows enhanced performance is a result of significant quantum confinement in these 3-5 nm wires. This study suggests simple (no additional doping) FETs using tiny top-down nanowires can deliver high performance for potential impact on both CMOS scaling and emerging applications such as biosensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.