Abstract

Quantum confinement is studied by numerically solving time-dependent (TD) Schrödinger equation (SE). An imaginary-time evolution technique is employed in conjunction with the minimization of an expectation value, to reach the global minimum. Excited states are obtained by imposing the orthogonality constraint with all lower states. Applications are made on three important model quantum systems, namely, harmonic, repulsive and quartic oscillators; enclosed inside an impenetrable box. The resulting diffusion equation is solved using finite-difference method. Both symmetric and asymmetric confinement are considered for attractive potential; for others only symmetrical confinement. Accurate eigenvalue, eigenfunction and position expectation values are obtained, which show excellent agreement with existing literature results. Variation of energies with respect to box length is followed for small, intermediate and large sizes. In essence, a simple accurate and reliable method is proposed for confinement in quantum systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call