Abstract
We present numerical results for ballistic-electron quantum transport through weakly open integrable circle and chaotic stadium billiards. The geometry of the pair of conducting leads is chosen in accordance with recent experiments for semiconductor microstructures [Marcus [ital et] [ital al]., Phys. Rev. Lett. [bold 69], 506 (1992)]. The conductance as a function of the Fermi wave number displays characteristic noisy fluctuations for both the integrable and the chaotic systems. We show that structures in the conductance autocorrelation function as a function of the Fermi wave number are related to short-length classical orbits. This correspondence permits incorporation of effects of phase decoherence due to incoherent scattering into the quantum calculation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.