Abstract

Stable end-point stars currently fall into two distinct classes — white dwarfs and neutron stars — differing enormously in central density and radial size. No stable cold dead stars are thought to span the intervening densities or have masses beyond ~2–3 solar masses. I show, however, that the general-relativistic condition of hydrostatic equilibrium augmented by the equation of state of a neutron condensate at 0 K generates stable sequences of cold stars that span the density gap and can have masses well beyond prevailing limits. The radial sizes and mass limit of each sequence are determined by the mass and scattering length of the composite bosons. Solutions for hypothetical bosons of ultrasmall mass and large scattering length yield huge self-gravitating systems of low density, resembling galactic dark matter halos.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.