Abstract

We first consider the basic requirements for a quantum computer, arguing for the attractiveness of nuclear spins as information-bearing entities, and light for the coupling which allows quantum gates. We then survey the strengths of and immediate prospects for quantum information processing in ion traps. We discuss decoherence and gate rates in ion traps, comparing methods based on the vibrational motion with a method based on exchange of photons in cavity QED. We then sketch the main features of a quantum computer designed to allow an algorithm needing 10^6 Toffoli gates on 100 logical qubits. We find that around 200 ion traps linked by optical fibres and high-finesse cavities could perform such an algorithm in a week to a month, using components at or near current levels of technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.