Abstract

In topological quantum computation quantum information is stored in exotic states of matter which are intrinsically protected from decoherence, and quantum operations are carried out by dragging particle-like excitations (quasiparticles) around one another in two space dimensions. The resulting quasiparticle trajectories define world-lines in three dimensional space-time, and the corresponding quantum operations depend only on the topology of the braids formed by these world-lines. We describe recent work showing how to find braids which can be used to perform arbitrary quantum computations using a specific kind of quasiparticle (those described by the so-called Fibonacci anyon model) which are thought to exist in the experimentally observed ν = 12/5 fractional quantum Hall state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.