Abstract

Calculations of nuclear properties and nuclear models are performed using quantum computing algorithms on simulated and real quantum computers. The models are a realistic calculation of deuteron binding based on effective field theory, and a simplified two-level version of the nuclear shell model. A method of reducing the number of qubits needed for practical calculation is presented, the reduction being with respect to that used when the standard Jordan-Wigner encoding is used. Its efficacy is shown in the case of the deuteron binding and shell model. A version of the variational quantum eigensolver in which all eigenstates in a spectrum are targeted on an equal basis is shown. The method involves finding the minima of the variance of the Hamiltonian, and its ability to find the full spectrum of small version of the simplified shell model is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.