Abstract

A legend tells that once Loschmidt asked Boltzmann on what happens to his statistical theory if one inverts the velocities of all particles, so that, due to the reversibility of Newton's equations, they return from the equilibrium to a nonequilibrium initial state. Boltzmann only replied ``then go and invert them''. This problem of the relationship between the microscopic and macroscopic descriptions of the physical world and time-reversibility has been hotly debated from the XIXth century up to nowadays. At present, no modern computer is able to perform Boltzmann's demand for a macroscopic number of particles. In addition, dynamical chaos implies exponential growth of any imprecision in the inversion that leads to practical irreversibility. Here we show that a quantum computer composed of a few tens of qubits, and operating even with moderate precision, can perform Boltzmann's demand for a macroscopic number of classical particles. Thus, even in the regime of dynamical chaos, a realistic quantum computer allows to rebuild a specific initial distribution from a macroscopic state given by thermodynamic laws.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call