Abstract

In this paper, we explore the power of quantum computers with restricted transition amplitudes. In 1997 Adleman, DeMarrais, and Huang showed that quantum Turing machines (QTMs) with the amplitudes from [Formula: see text] are computationally equivalent to ones with the polynomial-time computable amplitudes as machines implementing bounded-error polynomial-time algorithms. We show that QTMs with the amplitudes from [Formula: see text] is polynomial-time equivalent to deterministic Turing machines as machines implementing exact algorithms, i.e., algorithms that output correct answers with certainty. By extending this result, it is shown that exact quantum computers with rational biased coins are equivalent to classical computers. Moreover, we discuss the computational power of exact quantum computers with multiple types of coins. We also show that, from the viewpoint of zero-error polynomial-time algorithms, [Formula: see text] is not more powerful than [Formula: see text] as the set of amplitudes taken by QTMs; however, it is sufficient to solve the factoring problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call