Abstract

The central objective in any quantum computation is the creation of a desired unitary transformation; the mapping that this unitary transformation produces between the input and output states is identified with the computation. In [S.E. Sklarz, D.J. Tannor, arXiv:quant-ph/0404081 (submitted to PRA) (2004)] it was shown that local control theory can be used to calculate fields that will produce such a desired unitary transformation. In contrast with previous strategies for quantum computing based on optimal control theory, the local control scheme maintains the system within the computational subspace at intermediate times, thereby avoiding unwanted decay processes. In [S.E. Sklarz et al.], the structure of the Hilbert space had a direct sum structure with respect to the computational register and the mediating states. In this paper, we extend the formalism to the important case of a direct product Hilbert space. The final equations for the control algorithm for the two cases are remarkably similar in structure, despite the fact that the derivations are completely different and that in one case the dynamics is in a Hilbert space and in the other case the dynamics is in a Liouville space. As shown in [S.E. Sklarz et al.], the direct sum implementation leads to a computational mechanism based on virtual transitions, and can be viewed as an extension of the principles of Stimulated Raman Adiabatic Passage from state manipulation to evolution operator manipulation. The direct product implementation developed here leads to the intriguing concept of virtual entanglement – computation that exploits second-order transitions that pass through entangled states but that leaves the subsystems nearly separable at all intermediate times. Finally, we speculate on a connection between the algorithm developed here and the concept of decoherence free subspaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call