Abstract

The high-lying vibrational states of the magnesium dimer (Mg2), which has been recognized as an important system in studies of ultracold and collisional phenomena, have eluded experimental characterization for half a century. Until now, only the first 14 vibrational states of Mg2 have been experimentally resolved, although it has been suggested that the ground-state potential may support five additional levels. Here, we present highly accurate ab initio potential energy curves based on state-of-the-art coupled-cluster and full configuration interaction computations for the ground and excited electronic states involved in the experimental investigations of Mg2. Our ground-state potential unambiguously confirms the existence of 19 vibrational levels, with ~1 cm-1 root mean square deviation between the calculated rovibrational term values and the available experimental and experimentally derived data. Our computations reproduce the latest laser-induced fluorescence spectrum and provide guidance for the experimental detection of the previously unresolved vibrational levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.