Abstract

Quantum computation is a novel way of information processing that allows, for certain classes of problems, exponential speedups over classical computation. Various models of quantum computation exist, such as the adiabatic, circuit, and measurement-based models. They have been proven equivalent in their computational power, but operate very differently. As such, they may be suitable for realization in different physical systems, and also offer different perspectives on open questions such as the precise origin of the quantum speedup. Here, we give an introduction to the one-way quantum computer, a scheme of measurement-based quantum computation (MBQC). In this model, the computation is driven by local measurements on a carefully chosen, highly entangled state. We discuss various aspects of this computational scheme, such as the role of entanglement and quantum correlations. We also give examples for ground states of simple Hamiltonians that enable universal quantum computation by local measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call