Abstract

We obtain the time-dependent correlation function describing the evolution of a single spin excitation state in a linear spin chain with isotropic nearest-neighbour XY coupling, where the Hamiltonian is related to the Jacobi matrix of a set of orthogonal polynomials. For the Krawtchouk polynomial case, an arbitrary element of the correlation function is expressed in a simple closed form. Its asymptotic limit corresponds to the Jacobi matrix of the Charlier polynomial, and may be understood as a unitary evolution resulting from a Heisenberg group element. Correlation functions for Hamiltonians corresponding to Jacobi matrices for the Hahn, dual Hahn and Racah polynomials are also studied. For the Hahn polynomials we obtain the general correlation function, some of its special cases and the limit related to the Meixner polynomials, where the su(1, 1) algebra describes the underlying symmetry. For the cases of dual Hahn and Racah polynomials, the general expressions of the correlation functions contain summations which are not of hypergeometric type. Simplifications, however, occur in special cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.