Abstract
Quantum computers may achieve speedups over their classical counterparts for solving linear algebra problems. However, in some cases—such as for low-rank matrices—dequantized algorithms demonstrate that there cannot be an exponential quantum speedup. In this work, we show that quantum computers have provable polynomial and exponential speedups in terms of communication complexity for some fundamental linear algebra problems if there is no restriction on the rank. We mainly focus on solving linear regression and Hamiltonian simulation. In the quantum case, the task is to prepare the quantum state of the result. To allow for a fair comparison, in the classical case, the task is to sample from the result. We investigate these two problems in two-party and multiparty models, propose near-optimal quantum protocols, and prove quantum/classical lower bounds. In this process, we propose an efficient quantum protocol for quantum singular value transformation, which is a powerful technique for designing quantum algorithms. We feel this will be helpful in developing efficient quantum protocols for many other problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.