Abstract

AbstractClassical combinational logic circuits (CCLCs) are widely used in various fields. Corresponding to the CCLCs, here schemes are given for some quantum combinational logic circuits (QCLCs) based on the quantum NAND tree. Three typical circuits, adder, comparator, and seven‐segment display decoder, are discussed in detail as examples. All the designs of the schemes are based on the quantum random walk theory. Furthermore, these QCLCs are mapped onto the classical circuit networks and design new types of CCLCs, and take advantage of the fact that there is a good correspondence between the voltage in the circuit satisfying Kirchhoff's law and the system wave function satisfying the Schrodinger equation. These CCLCs that are designed have exponential speedup functions compared with conventional ones, which have been demonstrated experimentally. Because classical circuit networks possess good scalability and stability, the realization of QCLCs on classical circuits is expected to have potential applications for information processing in the era of big data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.