Abstract
A quantum color image encryption algorithm based on geometric transformation and intensity channel diffusion was designed. Firstly, a plaintext image was transformed into a quantum state form using the quantum image representation based on HSI color space (QIRHSI) representation as a carrier. Next, a pseudo-random sequence was generated using the generalized logistic map, and the pixel positions permuted multiple two-point swap operations. Immediately afterward, the intensity values were changed by an intensity bit-plane cross-swap and XOR, XNOR operations. Finally, the intensity channel of the above image was diffused in combination with the pseudo-confusion sequence as produced by the quantum logistic map to perform a diffusion operation on the intensity bit-plane to obtain the ciphertext image. Numerical simulations and analyses show that the designed algorithm is implementable and robust, especially in terms of outstanding performance and less computational complexity than classical algorithms in terms of security perspective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.