Abstract

We compute the classical and quantum cohomology rings of the twistor spaces of 6-dimensional hyperbolic manifolds and the eigenvalues of quantum multiplication by the first Chern class. Given a half-dimensional totally geodesic submanifold we associate, after Reznikov, a monotone Lagrangian submanifold of the twistor space. In the case of a 3-dimensional totally geodesic submanifold of a hyperbolic 6-manifold, we compute the obstruction term $\mathbb{m}_0$ in the Fukaya-Floer $A_{\infty}$-algebra of a Reznikov Lagrangian and calculate the Lagrangian quantum homology. There is a well-known correspondence between the possible values of $\mathbb{m}_0$ for a Lagrangian with nonvanishing Lagrangian quantum homology and eigenvalues for the action of $c_1$ on quantum cohomology by quantum cup product. Reznikov’s Lagrangians account for most of these eigenvalues, but there are four exotic eigenvalues we cannot account for.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.