Abstract

Modal strong coupling between localized surface plasmon resonance and a Fabry-Pérot nanocavity has been studied to improve the quantum efficiency of artificial photosynthesis. In this research, we employed Au nanodisk/titanium dioxide/Au film modal strong coupling structures to investigate the mechanism of quantum efficiency enhancement. We found that the quantum coherence within the structures enhances the apparent quantum efficiency of the hot-electron injection from the Au nanodisks to the titanium dioxide layer. Under near-field mapping using photoemission electron microscopy, the existence of quantum coherence was directly observed. Furthermore, the coherence area was quantitatively evaluated by analyzing the relationship between the splitting energy and the particle number density of the Au nanodisks. This quantum-coherence-enhanced hot-electron injection is supported by our theoretical model. Based on these results, applying quantum coherence to photochemical reaction systems is expected to effectively enhance reaction efficiencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.