Abstract

Migratory birds and other species have the ability to navigate by sensing the geomagnetic field. Recent experiments indicate that the essential process in the navigation takes place in the bird's eye and uses chemical reaction involving molecular ions with unpaired electron spins (radical pair). Sensing is achieved via geomagnetic-dependent dynamics of the spins of the unpaired electrons. Here we utilize the results of two behavioral experiments conducted on European robins to argue that the average lifetime of the radical pair is of the order of a microsecond and therefore agrees with experimental estimations of this parameter for cryptochrome--a pigment believed to form the radical pairs. We also find a reasonable parameter regime where the sensitivity of the avian compass is enhanced by environmental noise, showing that long coherence time is not required for navigation and may even spoil it.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.