Abstract

The paper describes an algorithm for semantic representation of behavioral contexts relative to a dichotomic decision alternative. The contexts are represented as quantum qubit states in two-dimensional Hilbert space visualized as points on the Bloch sphere. The azimuthal coordinate of this sphere functions as a one-dimensional semantic space in which the contexts are accommodated according to their subjective relevance to the considered uncertainty. The contexts are processed in triples defined by knowledge of a subject about a binary situational factor. The obtained triads of context representations function as stable cognitive structure at the same time allowing a subject to model probabilistically-variative behavior. The developed algorithm illustrates an approach for quantitative subjectively-semantic modeling of behavior based on conceptual and mathematical apparatus of quantum theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call