Abstract
We study the problem of constructing a general hybrid quantum-classical bracket from a partial classical limit of a full quantum bracket. Introducing a hybrid composition product, we show that such a bracket is the commutator of that product. From this we see that the hybrid bracket will obey the Jacobi identity and the Leibniz rule provided the composition product is associative. This suggests that the set of hybrid variables belonging to an associative subalgebra with the composition product will have consistent quantum-classical dynamics. This restricts the class of allowed quantum-classical interaction Hamiltonians. Furthermore, we show that pure quantum or classical variables can interact in a consistent framework, unaffected by no-go theorems in the literature or the restrictions for hybrid variables. In the proposed scheme, quantum backreaction appears as quantum-dependent terms in the classical equations of motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.