Abstract
In this paper, we report efficient quantum circuits for integer multiplication using Toom-Cook algorithm. By analysing the recursive tree structure of the algorithm, we obtained a bound on the count of Toffoli gates and qubits. These bounds are further improved by employing reversible pebble games through uncomputing the intermediate results. The asymptotic bounds for different performance metrics of the proposed quantum circuit are superior to the prior implementations of multiplier circuits using schoolbook and Karatsuba algorithms.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.