Abstract

We present an approach to gain detailed control on the quantum simulation of strongly correlated quantum many-body systems by constructing the explicit finite quantum circuits that diagonalize their dynamics. As a particularly simple instance, the full dynamics of a one-dimensional Quantum Ising model in a transverse field with four spins is shown to be reproduced using a quantum circuit of only six local gates. This opens up the possibility of experimentally producing strongly correlated states, their time evolution at zero time, and even thermal superpositions at zero temperature. Our method also allows one to uncover the exact circuits corresponding to models that exhibit topological order and to stabilizer states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call