Abstract
All quantum gates with one and two qubits may be described by elements of Spin groups due to isomorphisms Spin(3)\isomSU(2) and Spin(6)\isomSU(4). However, the group of n-qubit gates SU(2^n) for n>2 has bigger dimension than Spin(3n). A quantum circuit with one- and two-qubit gates may be used for construction of arbitrary unitary transformation SU(2^n). Analogously, the `$Spin(3n)$ circuits' are introduced in this work as products of elements associated with one- and two-qubit gates with respect to the above-mentioned isomorphisms. The matrix tensor product implementation of the Spin(3n) group together with relevant models by usual quantum circuits with 2n qubits are investigated in such a framework. A certain resemblance with well-known sets of non-universal quantum gates (e.g., matchgates, noninteracting-fermion quantum circuits) related with Spin(2n) may be found in presented approach. Finally, a possibility of the classical simulation of such circuits in polynomial time is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Quantum Information and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.