Abstract

We construct a classical algorithm that designs quantum circuits for algorithmic quantum simulation of arbitrary qudit channels on fault-tolerant quantum computers within a pre-specified error tolerance with respect to diamond-norm distance. The classical algorithm is constructed by decomposing a quantum channel into a convex combination of generalized extreme channels by convex optimization of a set of nonlinear coupled algebraïc equations. The resultant circuit is a randomly chosen generalized extreme channel circuit whose run-time is logarithmic with respect to the error tolerance and quadratic with respect to Hilbert space dimension, which requires only a single ancillary qudit plus classical dits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.