Abstract

Quantum Cherenkov radiation and quantum friction at the relative sliding of two transparent plates with the refractive index n have been studied in a fully relativistic theory. Radiation appears at velocities above the threshold value, v > v c = 2nc/(n 2 + 1). The contribution from s-polarized electromagnetic waves dominates near the threshold velocity. However, in the ultrarelativistic case (v → c), contributions from both polarizations are much larger than those in a nonrelativistic theory and a new contribution from the mixing of waves with different polarizations appears. The numerical results are supplemented by analytical calculations near the threshold velocity and the speed of light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.