Abstract

The growth patterns, simulated photoelectron spectra, and electronic properties of LaASil (A = Sc, Y, and La; l ≤ 10) compounds and their anions were studied via quantum chemistry calculations using the Perdew-Burke-Ernzerhof (PBE) method and unprejudiced structural searching software ABCluster. The results revealed that the growth patterns of the most stable structures of neutral and anionic LaASil showed an adsorptive mode. The lowest-energy structures (LESs) of the LaASil (l ≤ 7) clusters were similar, except for those of anionic LaYSi4- and LaYSi5- and neutral LaScSi7. Additionally, we investigated and calculated the photoelectron spectra, vertical detachment energies, adiabatic electron affinities, relative stability, charge transfer, magnetic moment, and chemical bond analysis of the LaASil ground-state structures. The La2Sil clusters exhibited higher stability than the LaYSil and LaScSil systems owing to their higher dissociation energies (DEs). The DEs of the LESs in the LaASi3 molecule are higher than those of other clusters. Thus, the LaASi3 cluster shows potential as a building framework for Si-based cluster materials with good stability. The natural population analysis data and chemical bond analysis results showed that the spd hybridization of the orbitals of the metal atoms in the LaASil system occurred. Except for the LaScSi9 and LaScSi10 clusters, the neutral LaASil compounds transform into the corresponding anions when an extra electron is accepted by the Si clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.