Abstract
In organic mass spectrometry, fragment ions provide important information on the analyte as a central part of its structure elucidation. With increasing molecular size and possible protonation sites, the potential energy surface (PES) of the analyte can become very complex, which results in a large number of possible fragmentation patterns. Quantum chemical (QC) calculations can help here, enabling the fast calculation of the PES and thus enhancing the mass spectrometry‐based structure elucidation processes. In this work, the previously unknown fragmentation pathways of the two drug molecules Nateglinide (45 atoms) and Zopiclone (51 atoms) were investigated using a combination of generic formalisms and calculations conducted with the Quantum Chemical Mass Spectrometry (QCxMS) program. The computations of the de novo fragment spectra were conducted with the semi‐empirical GFNn‐xTB (n=1, 2) methods and compared against Orbitrap measured electrospray ionization (ESI) spectra in positive ion mode. It was found that the unbiased QC calculations are particularly suitable to predict non‐evident fragment ion structures, sometimes contrasting the accepted generic formulation of fragment ion structures from electron migration rules, where the “true” ion fragment structures are approximated. For the first time, all fragment and intermediate structures of these large‐sized molecules could be elucidated completely and routinely using this merger of methods, finding new undocumented mechanisms, that are not considered in common rules published so far. Given the importance of ESI for medicinal chemistry, pharmacokinetics, and metabolomics, this approach can significantly enhance the mass spectrometry‐based structure elucidation processes and contribute to the understanding of previously unknown fragmentation pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.