Abstract

Sulfonamides have been found in aquatic environments. Degradation of sulfachloropyridazine (SCP) mainly proceeds through direct and indirect photolysis in the aquatic environment. However, the mechanisms underlying the triplet photolysis of SCP and the influence of metal ions on the photolysis mechanism have not yet been fully explained. In this study, we elucidated the triplet photolysis mechanisms of SCP and the effects of three selected metal ions (Zn2+, Ca2+, and Cu2+) on the SCP photolysis mechanisms using quantum chemical calculation. Optimization of molecular structures and reaction pathways analysis of SCP were carried out at the B3LYP/6-31+G(d,p) level of theory. Two minimum energy pathways were investigated in the triplet photolysis of SCP. In Step 2 of Path-I, the photolysis product of SCP is a sulfur dioxide extrusion product, (4-(3-chloro-6-iminopyridazine-1(6H)-yl)aniline). The estimated activation energies of Step 2 and Step 3 of Path-I were much higher than in Path-II. Therefore, Path-II was found as the lowest energy pathway to obtain the SCP photoproducts, and Step 2 of Path-II was confirmed as the rate-determining step (RDS) in the photolysis mechanism of SCP. For the RDS of Path-II, computations with the three metal ions complexes (IM1–Cu2+, IM1–Ca2+, and IM1–Zn2+) show that the metal ions Cu2+ and Ca2+ promote triplet-sensitized photolysis of SCP by reducing the activation energy of RDS of Path-II, whereas Zn2+ showed an inhibitory effect in photolysis of SCP by increasing the activation energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call