Abstract

The mechanism of the disproportionation of 2,5-diethyl-3,4-dihydro-2H-pyran-2-carbaldehyde in the Cannizzaro reaction in ethanol was studied by quantum-chemical modeling. The geometry was optimized by the semiempirical RM1 method in the unrestricted Hartree–Fock approximation, and the heats of formation of the reagents and transitional states were calculated. Two possible hydride transfer reaction paths are presented: through the formation of a transition state with one-center interaction or through a transition state with two-center interaction. The theoretically calculated values of the thermodynamic parameters agree with the experimental values and confirm the hydride transfer mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.