Abstract

The supercritical carbon dioxide diluent is used to control the temperature and to increase the efficiency in oxycombustion fossil fuel energy technology. It may affect the rates of combustion by altering mechanisms of chemical reactions, compared to the ones at low CO2 concentrations. Here, we investigate potential energy surfaces of the four elementary reactions in the CH3 + O2 reactive system in the presence of one CO2 molecule. In the case of reaction CH3 + O2 → CH2O + OH (R1 channel), van der Waals (vdW) complex formation stabilizes the transition state and reduces the activation barrier by ∼2.2 kcal/mol. Alternatively, covalently bonded CO2 may form a six-membered ring transition state and reduce the activation barrier by ∼0.6 kcal/mol. In case of reaction CH3 + O2 → CH3O + O (R2 channel), covalent participation of CO2 lowers the barrier for the rate limiting step by 3.9 kcal/mol. This is expected to accelerate the R2 process, important for the branching step of the radical chain reaction mechanism. For the reaction CH3 + O2 → CHO + H2O (R3 channel) with covalent participation of CO2, the activation barrier is lowered by 0.5 kcal/mol. The reaction CH2O + OH → CHO + H2O (R4 channel) involves hydrogen abstraction from formaldehyde by OH radical. Its barrier is reduced from 7.1 to 0.8 kcal/mol by formation of vdW complex with spectator CO2. These new findings are expected to improve the kinetic reaction mechanism describing combustion processes in supercritical CO2 medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.