Abstract

Gas phase chemistry in the cold interstellar clouds is dominated by ion-molecule and radical-radical interactions, though some neutralneutral reactions are also barrier-free and efficient at cold temperatures. It has been suggested that it is impossible to synthesize detectable abundances of the pre-biotic HCN oligomer adenine (H5C5N5) in the interstellar medium via successive neutral-neutral reactions. We attempted therefore to use quantum chemical techniques to explore if adenine can possibly form in the interstellar space by radical-radical and radical-molecule interaction schemes, both in the gas phase and in the grains. We report results of ab initio calculations for the formation of adenine starting from some of the simple neutral molecules and radicals detected in the interstellar space. The reaction path is found to be totally exothermic and barrier free, which increases the probability of occurrence in the cold interstellar clouds (10−50 K). We also estimated the reaction rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.