Abstract

Highly nitrated cage molecules constitute a new class of energetic materials that have received a substantial amount of interest. Among them 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a powerful explosive with poor impact and friction characteristics. In the present study we aim to design novel energetic materials by tailoring the molecular structure of CL-20. Important characteristics such as the heat of formation and density have been predicted using density functional theory and packing calculations, respectively. Sensitivity correlations have been established for model compounds by analyzing the charge on the nitro groups. Molecules IDX1, IDX4, and IDX7 have been found to have comparable performance with better insensitivity characteristics and may be explored as CL-20 substitutes in defense applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.