Abstract

BODIPY-based excitation energy transfer (EET) cassettes are experimentally extensively studied and serve as excellent model systems for the investigation of photophysical processes, since they occur in any photosynthetic system and in organic photovoltaics. In the present work, the EET rates in five BODIPY-based EET cassettes in which anthracene serves as the donor have been determined, employing the monomer transition density approach (MTD) and the ideal dipole approximation (IDA). To this end, a new computer program has been devised that calculates the direct and exchange contributions to the excitonic coupling (EC) matrix element from transition density matrices generated by a combined density functional and multireference configuration interaction (DFT/MRCI) calculation for the monomers. EET rates have been calculated according to Fermi's Golden Rule from the EC and the spectral overlap, which was obtained from the calculated vibrationally resolved emission and absorption spectra of donor and acceptor, respectively. We find that the direct contribution to the EC matrix element is dominant in the studied EET cassettes. Furthermore, we show that the contribution of the molecular linker to the EET rate cannot be neglected. In our best fragment model, the molecular linker is attached to the donor moiety. For cassettes in which the transition dipole moments of donor and acceptor are oriented in parallel manner, our results confirm the experimental findings reported by Kim et al. [J. Phys. Chem. A 2006, 110, 20-27]. In cassettes with a perpendicular orientation of the donor and acceptor transition dipole moments, dynamic effects turn out to be important.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call