Abstract

Local structures on electrode interfaces can be explored by quantum chemical investigation of medium-sized systems consisting of a cluster of substrate (metal) atoms, one or several solvent molecules, and/or at least one ion to be adsorbed at the interface. For the study of water adsorption and halide ion adsorption (unhydrated as well as hydrated) on a mercury surface, we have used the standard CNDO method together with geometrical optimization of the atom positions. In this paper, the following topics have been treated: (a) adsorption of a single water molecule in different positions on a close-packed plane cluster of seven mercury atoms; (b) adsorption of unhydrated halide ions (Cl − , Br − , I − ) in the “on-top” or hollow position on the mercury surface; (c) adsorption of monohydrated halides on the mercury surface. Further studies including solvation by six water molecules are discussed. The calculations provide information about minimum-energy geometries, energetic data, and local charges. Furthermore, they allow some conclusions about water mobility and reorientation on a close-packed metal surface, water orientation under the combined influence of an adsorbed ion and the metal surface, and trends of charge distribution in the halide series to be drawn. Calculations are critically discussed in the light of experimental and other quantum chemical data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.