Abstract

Predictions for the physical, chemical, electronic and magnetic properties of alkaline earth doped graphenes (AE-graphenes) were performed using density functional theory (DFT) calculations. Alkaline earth doping in graphene is feasible based on the adsorption energy, with alkaline earth dopants tending to adopt a nonplanar configuration when substitutionally doped in graphene. Electron transfer from the dopant atom to the graphene substrate was determined to be the primary mode of interaction within the system. Magnetic properties were also predicted for most of the AE-graphenes, with Mg-, Sr- and Ba-graphenes having ferromagnetic properties and Ca-graphene having ferrimagnetic properties. Previous DFT studies on Be-graphene were also successfully replicated and verified by this study. The unique emergent properties (i.e. electronic conductivity, spin polarization, local charge differences) of AE-graphene is promising for various applications such as catalytic, electrochemical, and electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.