Abstract

Quantum chemical simulation of infrared (IR) and Raman spectra for molecules with open-shell, radical, or multiradical electronic structure represents a major challenge. We report analytic second-order geometrical derivatives of the Mermin free energy for the second-order self-consistent-charge density-functional tight-binding (DFTB2) method with fractional occupation numbers (FONs). This new method is applied to the evaluation of NO radical stretching modes in various open-shell molecules and to the prediction of the evolution of IR and Raman spectra of graphene nanoribbons with increasing molecular size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.