Abstract

We present reaction pathways for adsorption reactions of the O atom and O2 molecule in the pristine and monovacancy defective graphite (0001) based on quantum chemical potential energy surfaces (PESs) obtained by the dispersion-augmented density-functional tight-binding (DFTB-D) method. We use a dicircumcoronene C96H24 (L0D) graphene slab as the pristine graphite (0001) model and dicircumcoronene C95H24 (LIV) as the graphite (0001) monovacancy defect model. We found that the adsorption reactions of O and O2 on the L0D surface can produce defects on the graphite surface. O can yield CO, while O2 can yield both CO and CO2 molecules. The adsorption reactions of the O and O2 on the LIV surface can produce a 2-C defective graphite surface and CO, and CO and CO2, respectively. The O and O2 more readily oxidize the defected surface, LIV, than the defect-free surface, L0D. On the basis of the computed reaction pathways, we predict reaction rate constants in the temperature range between 300 and 3000 K using Rice–Ramsperger–Kassel–Marcus (RRKM) theory. High-temperature quantum chemical molecular dynamics simulations at 3000 K based on on-the-fly DFTB-D energies and gradients support the results of our PES studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call