Abstract
The durability of anion-exchange membranes (AEMs) in alkaline fuel cells is largely determined by the stability of anion-exchange groups. Despite continuous research efforts, the commonly employed cations still have limited stability against hydroxide that can act as a strong base and nucleophile. This work is concerned with base-catalyzed degradation of organic cations initiated by proton abstraction to form reactive ylides or carbenes. We report on the performance of 24 methods combining density functional theory and electronic structure methods with implicit solvation calculations for predicting pKa values of organic cations in water and DMSO. The most accurate computational protocols are obtained using a combination of M06-2X/6-311++G** with the SMD solvation model for water (the mean absolute error of 0.4 pKa units) and B3LYP/aug-cc-pVTZ with the IEFPCM solvation model for DMSO (the mean absolute error of 1.4 pKa units). The aqueous pKa calculation protocol is cross-validated against the experimental...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.