Abstract

Objectives. The first allylpalladium complex was synthesized and characterized 60 years ago at the Department of Physical Chemistry of M.V. Lomonosov Moscow State University of Fine Chemical Technology (MITHT). This discovery was an important stage in the development of a new direction in chemistry - metal complex catalysis, which subsequently led to understanding the strategy for studying the mechanisms of catalysts action, and gave a powerful impetus to the study of intermediates of catalytic reactions. The key sta.ge in many catalytic processes involving transition metal complexes is the oxidative addition stage. The study’s aim was the quantum chemical modeling of the oxidative addition stage of allylic carboxylates to the Ni(0) and Pd(0) complexes. Methods. Quantum chemical calculations were carried out under the Kohn-Sham method for the density Junctional theory using the PBE exchange-correlation Junctional and all-electron L11 basis set. Results. As a result of theoretical study, we showed that the oxidative addition of allyl acetate to the triisopropylphosphite complex of nickel(0) and allyl formate to the triphenylphosphine complex of palladium(O) can proceed along two routes. In the first of them, in the coordinated breaking of the С - О bond and the formation of the metal-O bond, the same oxygen atom is involved, thus forming a three-center transition state. In the second route, the restructuring of relations is carried out in a five-center transition state. The chelating effect in the five-centered transition state of the second route reduces the reaction’s activation barrier by 12.7 kcal/mol for allyl acetate and the nickel(0) triisopropylphosphite complex Ni(P(QPr) 3 ) 2 and by 9.9 kcal/mol for allyl formate and the palladium(O) triphenylphosphine complex Pd(PPh 3 ). The presence of the second triphenylphosphine ligand in Pd(PPh 3 ) 2 reduces the activation barrier by only 2.6 kcal/mol. Conclusions. The quantum chemical modeling performed allowed us to determine the preference for the oxidative addition of allyl carboxylates to the Ni(0) and Pd(0) complexes through a five-center transition state. The reaction’s activation barriers through the “classical” three-center interaction are 9.9-12.7 kcal/mol higher, and the chelating effect is more noticeable for the Ni complex The presence in the coordination sphere of several bulky ligands, such as triphenylphosphine, practically eliminates the chelating effect in the oxidative addition of allyl carboxylates.

Highlights

  • As a result of theoretical study, we showed that the oxidative addition of allyl acetate to the triisopropylphosphite complex of nickel(0) and allyl formate to the triphenylphosphine complex of palladium(0) can proceed along two routes

  • The quantum chemical modeling performed allowed us to determine the preference for the oxidative addition of allyl carboxylates to the Ni(0) and Pd(0) complexes through a five-center transition state

  • 2 представлены энергетические, спектральные и структурные характеристики трехцентровых (M_TS1) и пятицентровых (M_TS2) переходных состояний стадии окислительного присоединения аллилацетата к комплексу Ni(0) и аллилформиата к комплексу Pd(0)

Read more

Summary

THEORETICAL BASES OF CHEMICAL TECHNOLOGY

Целью работы явилось квантово-химическое моделирование стадии окислительного присоединения аллиликарбоксилатов к комплексам Ni(0) и Pd(0). Хелатирующий эффект в пятицентровом переходном состоянии второго маршрута уменьшает активационный барьер реакции на 12.7 ккал/моль для аллилацетата и триизопропилфосфитного комплекса никеля(0) Ni(P(OiPr)3) и на 9.9 ккал/моль для аллилформиата и трифенилфосфинового комплекса палладия(0) Pd(PPh3). Наличие второго трифенилфосфинового лиганда в Pd(PPh3) уменьшает активационный барьер только на 2.6 ккал/моль. Проведенное квантово-химическое моделирование позволило определить предпочтительность протекания реакции окислительного присоединения аллилкарбоксилатов к комплексам Ni(0) и Pd(0) через пятицентровое переходное состояние. Активационные барьеры реакции, протекающей через «классическое» трехцентровое взаимодействие, выше на 9.9−12.7 ккал/моль, причем для Ni-комплекса хелатирующий эффект оказывается более заметным. Ключевые слова: аллильные комплексы, никель, палладий, окислительное присоединение, механизм реакции, метод функционала плотности, квантово-химические расчеты. Квантово-химическое исследование реакции окислительного присоединения аллилкарбоксилатов к комплексам Ni(0) и Pd(0). Quantum chemical investigation of the oxidative addition reaction of allyl carboxylates to Ni(0) and Pd(0) complexes

Objectives
Результаты и их обсуждение
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call