Abstract

A quantum chemical investigation of the chemical dry etching of SiO2 using H2 downflow plasma with flowing NF3 was carried out using the B3LYP/6-31+G(d,p) method. The results provide a reasonable interpretation of how the chemical dry etching of SiO2 takes place in a down flow area. Experimentally, it was found that the etch rates of thermal silicon oxide film range from 1 to 10 nm/min depending on the etching conditions, and white powder was produced on the etched surface. It was deduced that the etchants were HF and NH3 produced by the reaction of H+ NF3, and that the white powder on the etched surface was produced by the decomposition of (NH4)2SiF6 formed on the etched surface. The calculated results support the HF and NH3 production mechanism and clarify the molecular structures of (NH4)2SiF6 and the white powder. Another important point in the chemical dry etching of SiO2 was the realization of a high etching selectivity to Si. As the F atom was deduced to be the main etchant of Si, its generation mechanism in H2 down flow plasma with the addition of NF3 was also studied and a method of suppressing F atom production was proposed in this research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.