Abstract

The ability to calculate accurate electron densities of full proteins or of selected sites in proteins is a prerequisite for a fully quantum-mechanical calculation of protein-protein and protein-ligand interaction energies. Quantum-chemical subsystem methods capable of treating proteins and other biomolecular systems provide a route to calculate the electron densities of proteins efficiently and further make it possible to focus on specific parts. Here, we evaluate and extend the 3-partition frozen-density embedding (3-FDE) scheme [Jacob, C. R.; Visscher, L. J. Chem. Phys.2008, 128, 155102] for this purpose. In particular, we have extended this scheme to allow for the treatment of disulfide bridges and charged amino acid residues and have introduced the possibility to employ more general partitioning schemes. These extensions are tested both for the prediction of full protein electron densities and for focusing on the electron densities of a selected protein site. Our results demonstrate that 3-FDE is a promising tool for the fully quantum-chemical treatment of proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.