Abstract

In the present investigation, computations based on density functional theory (DFT) were employed to scrutinize the molecular configurations of clascosterone. Optimization was achieved using the DFT/B3LYP method with the 6-31G (d,p) basis set to thoroughly explore its structural and spectroscopic features. Additionally, molecular electrostatic potential (MEP) and Mulliken population analyses were conducted to comprehend the bonding characteristics and reactive sites. The Hirshfeld surface highlighted predominant H•••H interactions (71.5%), followed by O•••H interactions (25.5%). The stability of the compound was confirmed through the determination of hyperconjugative interactions using Natural Bond Orbital (NBO) analysis. Furthermore, molecular docking assessed the potential biological significance of clascosterone as an antitumor agent, targeting SMAD proteins like SMAD3 and SMAD4, resulting in binding energies of -8.22 and -8.57 kcal/mol, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.