Abstract

Binding of hydrocarbon guests to supramolecular hosts can lead to unusual geometric changes such as bending or coiling of guests upon encapsulation. Cucurbiturils (CBs) are classic cation binders that were recently used for the selective binding of small-membered hydrocarbons with a very high association constant (Ka ≈ 10(6) M(-1)). In this study, we have systematically investigated the binding of some alkanes to CB-[6] using a series of quantum chemical methods. The calculated binding free energies are very strong and are largely influenced by guest orientations inside the host and reorganization of host and guests. The computed (1)H NMR chemical shifts of the encapsulated alkanes agree with the experimental estimates thus confirming guest encapsulation. Further, we have shown that although binding of both cyclopentane and neopentane have very strong binding affinities (>20 kcal mol(-1)), the selectivity of cyclopentane to neopentane at CB-[6] is a kinetically driven process through the computation of approximate transition state structures of both alkanes to CB-[6]. The calculated binding affinities with dispersion corrected density functionals (DFs) are very close to the experimental estimates, whereas DFs that lack dispersion correction predict that alkane binding to CB-[6] is largely unfavorable. Finally, we have investigated the binding of some long chain alkanes to several supramolecular hosts using dispersion corrected semiempirical methods which cannot be routinely studied through density functional theory methods due to the larger size of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.