Abstract
A study of the effect of solute/solvent interactions on static and dynamic molecular hyperpolarizabilities (β and γ) of series of prototypical π-conjugated donor−acceptor chromophores is presented. The solvent effect was included via a recently proposed discrete quantum-mechanical Langevin dipoles/Monte Carlo method. The nonlinear optical properties (NLO) were computed using the INDO-like Hamiltonian based finite-field (FF) and sum-over-states (SOS) methods implemented in the GRINDOL code. The calculated β(γ) values are compared with experimental data determined in solution phase EFISH(THG) measurements and other published theoretical works. Generally, a reasonable agreement between calculated and experimental data was obtained. Moreover, our results indicate that the QM/LD/MC model gives a correct description of the solvent effect on the nonlinear optical response of molecules. It suggests that this level of theory can be used as an effective tool for investigation of NLO properties in condensed phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.