Abstract
At Nano-scale level, innovative biomedical techniques are developed in advanced drug delivery systems and targeted Nano-therapy. Ultrathin needles provide a low invasive and highly selective means for molecular delivery and cell manipulation. This article studies the geometry and the stability of Boron Nano-Bucket (B16 Cluster of Bucket Shape) and B15-Li complex by using computational modeling methods. The equilibrium geometry of Boron Nano-Bucket and BNB-Li complex in the ground state have been determined and analyzed by Density functional theory (DFT) employing 6-311 G (d, p) as the basis set. The frontier orbital HOMO-LUMO gap, Chemical Softness, Chemical Hardness have also been calculated to understand its complete Chemical Properties. In this study, we have also performed BNB-Li complex interaction with drug Resorcinol. The binding character interactive species have been determined by NBO and AIM analysis. From these studies, we can say that BNB and BNB-Li complex may also potentially able to stabilize ions around their structure like Carbon Nano Niddle (CNN) in future. The polar characteristics of CNN and their ability to carry ionic species, Li doped Boron Nano-Bucket might be suitable to act as drug carrier through nonpolar biologic media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Computational Methods in Sciences and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.