Abstract

BackgroundThe majority of well-known inhibitors are organic compounds containing multiple bonds and heteroatoms, such as O, N or S, which allow adsorption onto the metal surface. These compounds can adsorb onto the metal surface and block active surface sites, reducing the rate of corrosion.ResultsA comparative theoretical study of three benzimidazole isomers, benzimidazole (BI), 2-methylbenzimidazole (2-CH3-BI), and 2-mercaptobenzimidazole (2-SH-BI), as corrosion inhibitors was performed using density functional theory (DFT) with the B3LYP functional basis set.ConclusionsNitro and amino groups were selected for investigation as substituents of the three corrosion inhibitors. Nitration of the corrosion inhibitor molecules led to a decrease in inhibition efficiency, while reduction of the nitro group led to an increase in inhibition efficiency. These aminobenzimidazole isomers represent a significant improvement in the inhibition efficiency of corrosion inhibitor molecules.

Highlights

  • Corrosion is an electrochemical process by which metallic structures are destroyed gradually through anodic dissolution [1]

  • Where Iadd.% is the percentage ionization potential of the additive for model (x − BI), Ieadd.% is the inhibition efficiency %of the additive, and Ietheor.% is the theoretically calculated percentage inhibition efficiency. These results demonstrate that the nitration of corrosion inhibitor molecules lead to a decrease in inhibition efficiency; the most efficient inhibitor was model (4-NO2-BI), which displayed an inhibition efficiency of 64.075%

  • density functional theory (DFT) quantum-chemical calculations established a correlation between parameters related to electronic structure and the corrosion inhibition potential of the three corrosion inhibitor molecules BI, 2-CH3-BI, and 2-SHBI, as well as eight models for each inhibitor molecule

Read more

Summary

Introduction

Corrosion is an electrochemical process by which metallic structures are destroyed gradually through anodic dissolution [1]. Protection of metallic surfaces can be achieved by the addition of specific compounds known as corrosion inhibitors [2]. The use of organic inhibitors for preventing corrosion is a promising alternative. These inhibitors are usually adsorbed on the metal. The majority of well-known inhibitors are organic compounds containing multiple bonds and heteroatoms, such as O, N or S, which allow adsorption onto the metal surface. These compounds can adsorb onto the metal surface and block active surface sites, reducing the rate of corrosion

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.