Abstract

FTIR, FT-Raman and UV–Vis spectra of 3-methyladenine have been recorded and investigated using quantum chemical calculations. The molecular geometry and vibrational spectra of 3-methyladenine in the ground state are computed by using HF and DFT methods with 6-311G(d,p) basis set. VSCF, CC-VSCF methods based on 2MR-QFF and PT2 (Barone method) have been utilized for computing anharmonic vibrational frequencies. These methods yield results that are in remarkable agreement with the experimental data. The magnitudes of coupling between pair of modes have been also computed. Vibrational modes are assigned with the help of visual inspection of atomic displacements. The electronic spectra, simulated at TD-B3LYP/6-311++G(d,p) level of theory, are compared to the experiment. The global quantities: electronic chemical potential, electrophilicity index, chemical hardness and softness based on HOMO and LUMO energy eigenvalues are also computed at B3LYP/6-311++G(d,p) level of theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.